How fast does emerald ash borer kill trees in our forests?

troy_kimoto_ashmortality
Emerald ash borer (Agrilus planipennis Fairmaire) kills nearly every ash tree it encounters, as seen in this aerial view of a forest in Ontario, Canada (Image credit: Troy Kimoto, Canadian Food Inspection Agency, via Bugwood.org).

Agrilus planipennis Fairmaire, a shiny green beetle from Asia commonly known as the emerald ash borer (EAB), has taken North America by storm. Assisted mostly by people, but also by its own wings, EAB is rapidly spreading across urban and forested areas alike.

EAB-killed ash trees in urban areas are noticeable and require immediate attention, with either insecticide protection or removal. This maintains safety, aesthetics, and function of the urban forest. Trees that die in natural forests hardly require such vigilance. If dead ash trees aren’t likely to damage property or injure people when they fall, they can often be left alone. Also, in most hardwood forests, ash is relatively less common than other trees such as oak or maple, so the structural and functional loss to the forest canopy may be minimal.

Loss of ash has serious ecological and economic implications, however, as ash fruits and seeds are an important food source for wildlife, white ash wood is used for baseball bats, and black ash is used to make baskets. Given these environmental losses and that this invasive species seems capable of killing nearly every ash tree it encounters, finding out how much damage EAB has incurred in our natural forests is a pressing issue.

In their recent article in Biological Invasions, Randall S. Morin and fellow researchers in the USDA Forest Service, Northern Research Station used a national forest inventory database to measure just how destructive EAB has been so far in the United States.

Read the full story on Entomology Today.

Advertisements

Ken Raffa shares his passion for working with people to understand insects as agents of change

This is the third in a series where I peek into the lives of scientists. Click to read part 1 and part 2.

raffa
Ken Raffa pauses to take in the scenery during a hike at the IUFRO World Congress in Utah, 2014. Image courtesy of Ken Raffa.

Ken Raffa has had a storied career. His research has made great strides in advancing current understanding of how insect populations can rapidly explode. His work has revealed fascinating specifics and generalities that take place between pine trees and bark beetles during a beetle outbreak. An army of beetles is needed to attack and kill a tree and the tree has two different lines of defense. If both are compromised, the beetles win; if the tree can combat the beetles, the tree wins. It turns out this binary outcome is decided by the number of beetles attacking the tree; if enough beetles arrive for the attack, the tree will surely lose the battle. There is more: the first line of tree defense not only kills beetles by drowning them in pine sap; it also interferes with communication among beetles by physically blocking transmission of a pheromone the beetles make that attracts more beetles, which prevents beetles from assembling the numbers (the army) needed to kill the tree (see these ground-breaking studies for more details: Ecol. Monogr. 53: 27-49; Amer. Nat. 129: 234-262; Oecologia 102: 285-295). Ken used these key findings along with insights from others’ work to put forth a sophisticated model that explains how insect-driven disturbances operate across the landscape (BioScience 58: 501-517).

Throughout his career, Ken has won numerous awards (including the Entomological Society of America’s Founders Award in 2010), garnered over $9,000,000 in research grants, published over 250 papers in the primary literature, and trained 43 graduate students and postdocs, who have all gone on to be leaders in government, academia, and industry.

People are naturally curious about someone with such an impressive list of accomplishments (see his website for the full-length version of his CV). How did he arrive at forest entomology? What inspires him? How does he train students to be great leaders? I sat down with him at the recent International Congress of Entomology to find out. I discovered someone who is deeply passionate not only about the natural world (maybe not so surprising given his career path), but also about people. He believes in the strength of professional relationships—that are at their core really personal relationships—to solve scientific problems. This may be surprising, given his experience as a student. Here is what I learned from Ken about career paths, studying trees and insects, training graduate students, and the likely future of all three.

Read the full story on Entomology Today.

Are we ready for a revolution in scientific publishing?

Scientists publish their findings. Then others use that information to develop and test new ideas. Society accrues knowledge incrementally through this process. Necessary obstacles arise on the path from results to publication. In the current system, some obstacles are slowing the overall influx of new science and simultaneously letting poor science through.

for-reviewPeers must first evaluate the rigor of a study before it can be freely released into the scholarly literature. In their recent editorial, “Indexing the indices: scientific publishing needs to undergo a revolution”, Delzon, Cochard, and Pfautsch argue that the peer-review process has lost its ability to effectively and efficiently green-light additions to the primary literature. Delzon et al assert that this is a consequence of journals striving to raise their status (i.e., rankings against other journals, impact factor). The way in which journal impact is measured needs a serious overhaul, and Delzon et al think Google Scholar’s H5 index (equivalent to the Hirsch index) is just the tool for the job.

Instead of ranking the quality of a journal by the average number of citations received by its publications within the past five years (the traditional IF5 metric), the H5 index ranks a journal only by its top-cited publications. Papers not often cited (or not cited at all) won’t affect the H5 score either way. A switch to the H5 index doesn’t seem to change the current ranking of top journals (at least in plant science and chemistry, but see this other analysis). The strategy of H5 is advantageous because it doesn’t put pressure on editors to reject papers that they perceive to have little citation potential. If journals are more likely to accept papers (over 75% are currently rejected by top journals), authors are less hassled to re-submit multiple times, each time seeking an outlet with increasingly lower impact. New findings will then reach the scientific community (and maybe the public, if the journal is open access) at an appropriately rapid pace to advance science.

Most importantly, highlight Delzon et al, a switch to the H5 index will also lessen the burden on reviewers.  In the current system, high rejection rates translate to more reviews of the same paper. Reviewers are called into action more frequently than is necessary, and ultimately sustainable, given that peer review is essentially a volunteer service to the scientific community. Over-taxed expert reviewers must decline more reviews, which forces journals to reach out to non-expert or inexperienced reviewers. Not properly vetted, unsound scientific findings then enter the scientific literature, an unfortunate result that undermines the basic tenet of the peer-review process. So, yes, it seems we are in need of a revolution in scientific publishing!

Further reading on journal impact and peer review:

Impact factors don’t evaluate scientific quality and should not be judged as such

Impact shows whether journals can attract the best papers 

Journal impact ≠ research quality

Imbalance of peer review effort across the scientific community

How does research environment shape science and life outside of science?

This is the second in a series where I peek into the lives of scientists. See part 1 here.

 

dscn2440
Jesse Miller collects field data to investigate how soil, habitat connectivity, and fire history influences plant communities in the Ozark Mountains. Image courtesy of Jesse Miller.

All scientists try – or should try – their best to adhere to the scientific method. They pose a curious and contemporarily-relevant question about how something works, usually with a general idea of what they expect to find; they cleverly design a way to go about testing this question; they put in some hard work to carry out an experiment; and they examine the results to see if a preconceived idea about the question makes any sense. Usually it doesn’t, and it’s back to step one. This seemingly ancient cyclical process is the foundation upon which scientists base their life’s work. Traditionally this work took place either out in the natural world or in the laboratory. As we expand our knowledge base in an era of rapid growth in many scientific fields, people are also pushing the boundaries of where science takes place (click here for an interesting example). As scientists are specialists in their subject field, they also become specialists in their research environment. I wondered which aspects of working in different research environments are similar, and which are different? And how does dealing with these common and unique challenges transfer to life outside of science?

To gather some insight, I interviewed a scientist working in each of four research environments: outdoors in the field, and indoors in the laboratory, the office, and the classroom.

See the full story on Entomology Today.

In search of an alternative career at the 25th International Congress of Entomology

Research is what we learn to do in graduate school. For most students, this is a steep learning curve. Some students, like me, eagerly accept the challenge. We spend weekends and nights in the field or at the lab. We lose ourselves in collecting data; running samples, measuring things, compiling the numbers, graphing the results, and searching the literature for insights into what might be driving the patterns in the point scatters, bars, and error bars. Maybe we don’t have a clear direction or plan at first; we just desperately want to be doing science, learning something new about the world around us. Simply being present in the lab felt productive because it was truly an enchanted place; it was the birthplace of discovery. At this stage, and for years after, I pursued research wholeheartedly, following my scientific interests around North America. Other students (maybe the smart ones) recognize right away that research is not for them, and begin to plan accordingly for a career outside of research while still in graduate school (which must be fairly difficult to do in the midst of people who seem to know only about one thing: research). I always thought I would be a professor because graduate school was such a natural, easy fit for me. What I didn’t count on was that I would spend a lot of time waiting in the queue for a tenure-track position. My interests changed during this time, and I found myself in a place I no longer wanted to be, with little knowledge of what one with a research background might do outside of research. Was it too late for me to transition to something else? I had no idea if that was the case, or where to start looking for something else. I began my search in my network, because after all, that is what professional networks are for, right? So, strangely enough, at the largest meeting of Entomologists in history, where research was probably at the forefront of most attendees’ minds, I was in search of something different.

img_1397
Women from all different career stages come together to chat about science and life at the Women in Entomology breakfast in Orlando, held annually at Entomological Society of America meetings.

I was nervous that this would be a difficult task amongst people inhabiting traditional careers. Regardless, I was motivated by my new interests, with energy enough for leads that might or might not pan out. What this plan consisted of was me asking practically everyone I knew whether they knew anyone or any opportunities in writing, editing, or publishing (some of my newly-identified interests), or someone who had built a career around a place they wanted to live (a growing interest of mine and an unwritten no-no for seekers of traditional research positions). I got some good leads (I hope) and I plan to follow them up. Before the conference I had also connected with colleagues via email and phone conversations, asking questions and following up leads about alternative paths. These exchanges had ranged from mildly useful to extremely helpful. I expected a similar result at the Congress. I was surprised by what I got, and by my reaction to it. Perhaps it was the in-person aspect of a conference that demands an emotional investment in conversation not required with phone calls and emails, or perhaps it was the larger, more random sampling of people I connected with (out of 6500 people, I talked to around 75 or so).

A dichotomy of inspiration and heavy empathy surrounded my thoughts as I progressed through the week in Orlando. From some I heard (and sensed) fear for their uncertain futures, or loss and struggle from jobs not offered. From others I heard clever and interesting solutions to integrate personal and professional happiness into a complete life. Graduate students and postdocs told me about projects they hoped could be finished soon, so they could publish their work and be competitive for fellowships and jobs. The unspoken consensus seemed to be that whatever they had accomplished so far, it wasn’t enough (see more on this here and here). Others told me of jobs they desperately wanted and had fiercely prepared for, but were not offered. Even worse, some of those jobs had been offered to people with fewer accomplishments, less experience, or more limited skill sets. I could relate to this, because it had happened to me more than once. These struggles can leave people in a dark place (see more on this here and here).

I have spent many hours thinking about how to solve this problem. Because it is rooted in policy and the big business of higher education, there is no easy or quick solution. There are simply too many highly-qualified and highly-educated people searching for too few jobs right now (see here, here, and here for more). As an individual, I feel I can best contribute to the solution by listening to others, providing emotional and what little professional support I can for them. I firmly believe in the strength of our scientific community to help one another get through this difficult time in our field. People are resilient (otherwise we would not have survived as a species). What inspires me is learning about the clever ways people successfully circumnavigate obstacles and overcome challenges, both professionally and personally. I’m especially curious about people who continue to do research, but not in a full-time capacity or institutional position. For example, at the conference I heard about a scientist who followed his wife to the location of her dream job; no job was immediately available for him there, so he set up a lab in his house and continued his research independently. The setting was unconventional, yet he successfully obtained funding, and he was able to pursue his personal and professional passions. This is not a story I would have likely heard in graduate school. A dear friend of mine – and a brilliant scientist – shared a lovely outlook on science with me at the Congress. She loves research, but she doesn’t let it dictate her life; she does science when she wants and how she wants. She has made a decision that what’s most important to her is being in the same location as her husband. She selects only projects of great interest to her. She goes on research expeditions with other scientists, and uses her colleagues’ lab equipment and space on occasion. She doesn’t have a formal position or title at an institution (even though her accomplishments make her very deserving of this), prestige which she deems unnecessary compared with happiness in her personal life and freedom to do what science she likes. Clearly, not all decisions to avoid a permanent research position are (or should be) dictated by a person’s partner; those examples were a few I happened across in Orlando.

I recognize that age and career stage likely has a lot to do with what I heard at the conference. Some degree of fear is unavoidable when people are just leaving the safe nest of graduate school, readying themselves to be independent and responsible for their own fate. The limited job market that young people face also has a lot to do with this fear. My experience at the Congress illustrates the importance of community in supporting careers (see my post on how conferences provide emotional support), no matter what their trajectory. A lot of encouragement can be had from hearing about how other people overcome personal and professional challenges. And of course, learning of professional opportunities and following up on them is key. What I’ve learned so far is that a huge energy investment is required to propel yourself into a career transition. I have a feeling the payoff will be worth it. I try to focus on finding what it is I like to do most, finding a way to keep that in my life, while carefully considering the sacrifices I’m willing to make to have the things I want most in life. Below I list some online resources on career transitions and alternatives to academia that I’ve found helpful.

-Science Careers, individual development plan

-The Chronicle of Higher Education, advice

career advice, Inside Higher ED

transition from scientist to science writer

blog about doing science

Young researchers thrive in life after academia

-Most importantly – talk to people in your network about your interests; you might be pleasantly surprised by what you find out!

Update (October 14, 2016): Here’s an inspiring article about a researcher’s alternative path to academia

Update (November 10, 2016): Another interesting article on a science communication alternative to research

Update (November 14, 2016): A great book I discovered on how to plan and negotiate a job search post-PhD: Next Gen PhD: a guide to career paths in science, by Melanie V. Sinche

Interviews from the Women in Entomology Breakfast at the 2016 International Congress of Entomology

The Women in Entomology Breakfast is an annual tradition that began in 1989 at the Entomological Society of America meetings. I asked several women what they liked best about the Breakfast, including long-time organizer Gail Kampmeier and Ento-Allies member Gwen Pearson. Watch the interviews on Entomology Today.

The Breakfast has a fascinating history that began with pink post-it notes in the women’s bathroom. Read Gwen Pearson’s account of it on Entomology Today.